The Impact of Early Genes and Gene Editing Technology Associated with Clustered Repeats on the Development of Human Body Organs
Abstract
study aims to investigate the roles of EGR-1, CRISPR/Cas, and HOX genes in organ development and growth. The study used CRISPR/Cas to investigate the impact of catalase mutations on organ regeneration. Early embryonic mutants were generated by injecting gRNAs and Cas9 protein into zygotes, followed by tail amputation in larvae. Additionally, the study explored the role of specific Hox genes in axon elongation and Wnt signaling regulation. EGR-1, induced by TGF-β1, enhanced collagen production, underscoring its importance in wound healing. Integration of EGR-1, HOX proteins, and CRISPR-Cas revealed a regulatory complex influencing organ development. The integration of EGR-1, HOX proteins, and CRISPR-Cas revealed a regulatory complex. EGR-1 aids wound healing, HOX proteins influence fetal development and organ formation, and CRISPR-Cas enables precise genome modifications.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the TJHEST journal right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in TJHEST.
The TJHEST permits and encourages authors to archive Pre-print and Post-print items submitted to the journal on personal websites or institutional repositories per the author's choice while providing bibliographic details that credit their submission, and publication in this journal. This includes the archiving of a submitted version, an accepted version, or a published version without any Risks.